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INTRODUCTION

First, the solution of the problem of torsion of a solid semicircular cylinder is obtained
in closed form. Next, employing a special set of multibipolar coordinate systems the
problem of torsion of a perforated semicircular cylinder is formulated. In particular,
numerical results for the cases of semicircular cylinders with one circular cavity are
presented for various geometrical configurations.

METHOD OF SOLUTION

In recent years torsion of multihole circular cylinders as well as torsion of prismatic
bars with reinforced cavities have been investigated by Ling [J] and Kuo and Conway
[2-4]. These authors employed Howland functions [5] in order to obtain the solutions
of the aforementioned problems. Using another technique, the problem of torsion of
a rectangular bar with two symmetrical circular cavities was recently solved by the
author [6]. The technique employed in this investigation is quite different from those
mentioned previously.

Consider a prismatic bar whose cross-section is either a solid or a perforated semi­
circle as shown in Figs. I(a) and (b). The nondimensional polar coordinates p = rlR,
oare chosen for the first step of the analysis. According to the 51. Venant's theory for
torsion of prismatic bars [7] the equation

\72'1' = -2,

- iP Ja Ja2

V2 = _ + - - + -:;-.,
ap2 p ap p- ao-

must be satisfied and the condition

(for polar coordinates)

(1)

on the outer boundary (2)

has to be fulfilled. For the case of the perforated region, the following additional con­
ditions also must be met:

'I' = Kill on the boundary of each inner cutout, (3)

( a'l' dS = - 2 x (nondimensional area of each cavity).
)c", an (4)

(5)

Here in relations eqns (3) and (4) Kill are constants, ds is the dimensionless element of
arc length on the inner boundary em and Ii is the direction normal to that boundary.

The closed form solution for a solid semicircular section
First, the right-hand side of eqn (I) is expanded in Fourier sine series to obtain

a2'1' 1a'l' J a2'1' ,. ( 4) .-+--+--= -2 ~ - smnO.
ap2 p ap p2 ae2

n _ 1.3.5 mf

t The author wishes to thank the Department of Computing Services of IUPUI for providing computer
time for this probject.
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Fig. l. Semicircular bars with solid and perforated cross-sections.

Next, the solution of eqn (5) is sought in the form

'l'. = ~ f,,(p) sin ne.
lIe 1.3.5

(6)

The expression (6), which obviously satisfies the condition 'l' =0 along the diameter
MAN [see Fig. 1(a)], is substituted in eqn (5). The integration of the resulting ordinary
differential equations and the consideration that 'l'1 = 0 at p = I finally lead to:

'l'l =! i pOI sin nO _ 8p2 i sin nO . (7)
'IT ,,-'.3.5 n(2 + n)(2 - n) 'IT ,,-1.3.5 n(2 + n)(2 - n)

It is known [8-IOJ that

~ p" .I.. I I cosh A + cos </>
F.(p, </» = ..c.,; - cos n", = - n ,

n-I.3.5 n 4 cosh A - cos </>

~ pOI t [ 'IT
F2(P, </» = ~ - sin n</> = - --

n-I.3.5 n 2 2

A=

+ Arctan {G(A, </»} + Arctan {G(A, 'IT - $)}] ,

(I + cosh A) tan ~
-In p, G(A, $) = . h'" ,J > P > 0,

SID ~

(8)

i cos n</> =! In (cot !), </>:#< 0, 'IT
n=I.3.5 n 2 2

Employing method of partial fractions and utilizing the relations given in eqn (8) the
closed form solution for the torsion of a solid semicircular bar is derived. In the fol-



Solid and perforated semi-circular cylinders 1S7

lowing the explicit expressions for '1'.. warping function iP.. and shear stress TZII are
given:

'1'1 = .; {F2 [2 - (:2 + p2) cos 26] + Fl (:2 - p2) sin 26

+ (p - ;) sin 6} - ~ p2(1 - cos 26), 1 > p > 0,

q>1 = .; {Fl [2 - (:2 + p2) cos 26] - F2 (:2 - p2) sin 29

+ (p + ;) cos 9} - ~ p2 sin 26, 1 > p > 0,

0'1'\ 2{I [ .T<:II = - op = -:;;: p3 P sm 9 + F2(p, 6) cos 26

- F\(p, 6) sin 29] - p [ - ; sin 6 + F2(p, 6) cos 26

+ Fl(p, 6) sin 26]} - 2p sin2 6, 1 > p > 0,

T<:e 11>-0 = - 0'1'1 I = - .!. sin 6
op p-+O 311' '

T<:ell>-I = lim (- 0'1'1) = - ~ [2 sin 6 - 2F,(I, 6) sin 29]
1>-1 op 11'

+ 1 - cos 26, 6 "'" 0, 11'.

(9)

It should be mentioned that the expression for - 0'.1' I/iJp 11>-0 in eqn (9) has been directly
obtained from the series solution eqn (7). The nondimensional torsional rigidity D is
obtained from

- L1f i l
iJ'I'lD = p2-dpd6.

o n op
(10)

Employing eqn (7) into eqn (10) and using a similar procedure for summing up the
resulting series, it is found

(II)

The actual value of shear stress Tze is obtained from T;:e = TzelD • TIR 3
, in which Tis

the applied torque. In particular

(12)

Differentiating ize IP-+l in relation eqn (9) with respect to a, and setting the result equal
to zero, it is seen that the location of the maximum shear stress along p = 1 is at a =
11'/2. The highest value of shear stress in the semicircular cylinder occurs at p = o. e
= 11'/2 as can be seen from relations eqn (12). It is interesting to note that the maximum
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shear stress in a solid semicircular bar is approximately 4.48 times that ofa solid circular
bar of the same radius. It is also found that the shear stress Tze becomes zero at p =
0.48022, a = 1r/2.

Solution for a perforated semicircular section
Consider a semicircular region with circular holes symmetrically located with respect

to the y axis as shown in Fig. I(b). A set of complementary solutions of eqn (I) in
multibipolar coordinate systems are chosen as follows:

IX>

'1'2 = Ao(11 - /3) + ~ AnHen"!) - en(2P-"!I)]cosn~1
n-I

+ [en,,!z - en(2P-"!z)] cosnE2 + ... + [en"N - en(2P-"!N)]cosnEN (13)

- [en,!; - en(2P-'!;)]cosnEt- [en,,~ - en(2P-'ll2)] _ ... _ [en"!;" _ en(2P-'ll;")]},

in which ~i and 11i are the bipolar coordinates measured with respect to rectangular

coordinate system Xi and Yi [see Fig. l(b)] and are given by [11]

2CY; - Xi - YI
E; = Arctan xl + Yl _ C2 ' Xi = R ' Yi = R '

1 (XI + C)2 + Yl - Ca. .
11; = 21n (XI _ e)2 + Yl' C = R = Rsmh a, I = 1,2,3, ... N.

(14)

Here in eqn (14) /3 is the common value of all11;s on the semicircular outer boundary
of the bar. a and /3 are obtained from the following relations [II]:

/3 = cosh-I(a cosh a + e),

(
1 - a2

- e2
)ex = cosh-I ,

2ae

_ a
a=­

R'

(15)

It should be noted that the coefficient of each A" in the complementary solution (13)
automatically satisfies the homogeneous condition on the semicircular boundary. It
should also be noted that the origins of the prime coordinates such as Ei, 11i, E2. 112 are
the reflections of those of EI. 111, E2' 112. In fact, the combination of each pair of terms
such as

(16)

produces an odd function with respect to y having a zero value along the diameter of
the semicircle. Adding '1'. and '1'2 in order to obtain the solution for a perforated semi·
circular bar, and employing the condition (4) it is found:

Ao = O. (7)

The remaining condition to be satisfied by 'I' = '1'1 + '1'2 is (3). The constants K •• K 2 •

. • . are evaluated along with At, A2 , ••• An by satisfying the mentioned condition(s)
on the boundaries of the inner circular holes. In order to achieve this goal. p terms in
the series solution (13) are retained and the boundary condition(s) are satisfied at q
points (q > p) of the boundary (or boundaries) of the inner circular cutouts.

This procedure leads to a set ofq x p linear algebraic equations which are normalized
and solved approximately by the technique of least square error [12]. For all the nu­
merical results presented here q and p are chosen as 35 and 24 respectively. The ob·
tained results are remarkably accurate. For example, for a case of a semicircular bar
with one hole along the y axis the maximum value of relative error in satisfaction of
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Table 1. The values of dimensionless shear stress ,.:. = 'TdiD and dimensionless torsional rigidities Dfor
various eand a

Torsional
e a ,.:. at A ,.:. at B ,.:. at C ,.:. at E rigidity D

0.35 0.15 -2.8855 -1.8879 0.2287 2.4150 0.30057
0.35 0.20 -3.0211 -2.3750 0.4963 2.4130 0.30034
0.40 0.25 -2.9416 -2.2184 1.1620 2.4795 0.30091
0.50 0.20 -2.7212 -0.7551 1.6387 2.5921 0.29774
0.50 0.25 -2.6988 -1.0876 1.9632 2.7245 0.29430
0.50 0.30 -2.7293 -1.4586 2.3526 2.9429 0.28655
0.50 0.35 -2.8700 -1.9190 2.8781 3.3115 0.27213
0.60 0.25 -2.8266 -1.6311 2.8967 3.2488 0.27266
0.60 0.30 -2.88194 -0.4363 3.7002 3.9021 0.25395

the inner bounda!}' condition is of the order of 10- 12. The values of dimensionless
torsional rigidity D for a hollow bar is numerically determined by a highly accurate
eight order polynomial approximation for numerical integration [12].

In Table 1 the values of dimensionless shear stresses T:e = T:elD at points A, B, C,
E (see Fig. 1(c)] as well as the nondimensional torsional rigidities D are presented for
various e and a. It is seen that for lower values of eand a the maximum shear stress
occurs at point A. However, for higher values ofe and athe maximum shear stress is
shifted to point E.
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